Problem: Illiquidity

- Trillions of $ in mortgage-backed securities and other assets that have little or no liquidity
- Financial companies that hold the assets have little ability to lend
Legislation

- Treasury purchases $700 billion of assets
- Key questions
 - What to buy?
 - At what price?
Objectives

• Provide quick and effective means to purchase troubled assets and increase liquidity
• Get price related to value (i.e. protect the taxpayer)
• Use transparent rules-based process with minimal scope for discretion and favoritism
One approach: single auction for many securities

- Government buys many securities together
- Price starts high; holders offer securities
- Price falls as long as excess supply
- Clearing price is say 30 cents on dollar
- Government has just bought worst-of-the-worst
 - Paid 30 cents for all securities worth between 0 and 30 cents
The securities differ
- Some are good; some are okay; some are worthless

Can’t treat them as if they are the same, with single price
- Severe adverse selection problem

Problem can be ameliorated if values can be reliably scored
- But there exists no reliable data or methodology to assess value
- Any effort to determine reference prices may take a long time

Inaccurate scores create a similar adverse selection
- Government buys the securities that are worth the least relative to their scored values
A two-part reverse auction plan

• First, simultaneous descending CUSIP-by-CUSIP auctions are run for each feasible security
 - “Feasible” means holdings are sufficiently diffuse to support a reasonably competitive auction
 - Only some, but not all, of each security is auctioned (e.g. 50%)

• Prices from the auctioned securities are regressed on all available characteristics, and are used to develop reference prices for the remaining securities

• Second, pooled auctions are run for the remaining securities
 - Bidding occurs on discounts or premiums to the reference prices derived from the initial auctions
 - Bidders with greatest need for liquidity are most likely to win
Advantages of two-part plan

- CUSIP-by-CUSIP auctions, when feasible, do not require any value information or other external information
- Hence, they can be run when needed (October!)
- Prices developed for individual securities can help to unfreeze the market (if government purchases 50%, private parties may assist with the remainder)
- There is a built-in methodology for determining reference prices
- Competition between CUSIPs is exerted for securities where within-CUSIP competition is inadequate
Preliminaries

- Treasury announces auction for a class of securities
- Holders nominate quantities of each
 - Bidders forbidden to sell nominated quantities until auction
- Treasury announces demand for each security
 - Quantity demanded capped to assure competition

Last two steps done shortly before auction
Part I: Separate auction for each security

• To create competition, Treasury buys only a fraction of security (e.g. 50%)
 ▪ If Treasury instead bought close to 100%, bidders would have strong incentive to reduce their quantities strategically and thereby obtain 100 cents on dollar

• Clearing price is such that some owners willing to sell, but some owners willing to hold. Thus, price is related to value, and the cost to Treasury is minimized

• The “winners” are those who value the security the least (or value liquidity the most)
Multiple benefits

- Liquidity goes directly to those who value it most
- Price revelation improves liquidity for everyone
- Secondary market is restored
- Creates information that Treasury can use in subsequent auctions
How much to buy of each security?

- Cap demand to assure a competitive auction
- Cap demand so don’t buy too much of any particular security
Three pivotal seller rule

To assure a competitive auction, \textit{cap demand at sum of nominated quantities other than the three largest}

- Guarantees at least four bidders competing for every share
- Demand does not reveal much about concentration

- Based on three pivotal supplier test used in largest US electricity market (PJM) since 2005
 - Auction viewed as competitive whenever demand can be fully satisfied by bidders other than three largest
 - Applied in daily uniform-price auctions where number of bidders is limited by transmission constraints
Three pivotal seller rule

- All quantities in million dollars of security face value
- Cap demand to assure a competitive auction
 - Nominated quantity of bidder $i = q_i$, $i = 1, \ldots, n$
 - Listed in descending order: $q_1 \geq q_2 \geq \ldots \geq q_n$
 - Total nominated quantity = $Q = q_1 + q_2 + \ldots + q_n$
 - Demand for a competitive auction = $Q - q_1 - q_2 - q_3$
- Cap demand so don’t buy too much of any particular security
 - Issued face-value quantity = $F \geq Q$
 - Demand no more than fraction x of F (e.g., $x = 50\%$)
- Demand = $D = \min \{ Q - q_1 - q_2 - q_3, xF \}$
Simulation of quantity purchased
(holdings drawn from either uniform or beta distributions)

Percent of shares purchased by number of bidders
(mean ± 2 standard deviations)

Uniform Distribution ~U[0,1]

Beta Distribution ~Beta(1,3)
Descending-clock auction

- Since it’s an auction to buy rather than sell (a reverse auction), price descends
- Auction is conducted in discrete rounds
- Auctioneer announces price for each security
- Bidders submit quantities for each security
- Activity rule: Quantity cannot increase as the price falls
- Aggregate supply, but not individual bids, announced to bidders
- Auctioneer decrements price for each security
- Process continues until supply equals demand
Auction mechanics

Price (cents)

Aggregate Supply

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6

Closing Price

Demand

Quantity (million $)
Closing with overshoot

Price (cents)

Aggregate Supply

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6

Overshoot

Closing Price

Demand

Quantity (million $)
Intraround bids
Intraround bidding – one bidder

Price (cents)

Quantity offered by a Bidder

Quantity (million $)
Intraround bidding – aggregate supply

- **Price (cents)**
 - P_{start} (50 cts)
 - P_1
 - P_2
 - P_3
 - P_4
 - P_5
 - Closing Price (31 cts)
 - P_6 (30 cts)

- **Aggregate Supply**
 - Round 1
 - Round 2
 - Round 3
 - Round 4
 - Round 5
 - Round 6

- **Demand**

- **Quantity (million $)**
Demand may depend on price

Price (cents)

Aggregate Supply

P_{start} (50 cts)

P₁

P₂

P₃

P₄

Closing Price

P₅

Demand

Quantity (million $)

Round 1

Round 2

Round 3

Round 4

Round 5
Handling many securities

- Related securities grouped together in a single auction
- Simultaneous descending clock
- Price clock for each security
- Allows arbitrage across securities and better management of liquidity needs
- Can auction 100 (or more) securities simultaneously, completing all in a single day
 - No positions held open overnight
An example with 8 securities

Security-by-Security Auction

quantity in $25,000 of face value; price in cents on the dollar

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
<td>1,200</td>
<td>2,000</td>
<td>1,500</td>
<td>800</td>
<td>2,500</td>
<td>1,000</td>
<td>1,200</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>94.35</td>
<td>80.22</td>
<td>72.58</td>
<td>92.11</td>
<td>62.14</td>
<td>54.77</td>
<td>56.11</td>
<td>63.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
<td>1,200</td>
<td>2,000</td>
<td>1,500</td>
<td>800</td>
<td>2,500</td>
<td>1,000</td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Price</td>
<td>98.00</td>
<td>96.00</td>
<td>87.00</td>
<td>98.00</td>
<td>75.00</td>
<td>66.00</td>
<td>67.00</td>
<td>76.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supply</td>
<td>2,300</td>
<td>3,120</td>
<td>6,000</td>
<td>6,000</td>
<td>2,800</td>
<td>5,500</td>
<td>1,500</td>
<td>3,000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>90.00</td>
<td>88.00</td>
<td>80.00</td>
<td>90.00</td>
<td>69.00</td>
<td>61.00</td>
<td>63.00</td>
<td>70.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
<td>2,160</td>
<td>5,000</td>
<td>4,500</td>
<td>2,400</td>
<td>5,250</td>
<td>1,500</td>
<td>2,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Price</td>
<td>83.00</td>
<td>82.00</td>
<td>74.00</td>
<td>83.00</td>
<td>63.00</td>
<td>56.00</td>
<td>60.00</td>
<td>64.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supply</td>
<td>2,000</td>
<td>1,920</td>
<td>4,400</td>
<td>3,300</td>
<td>1,680</td>
<td>4,000</td>
<td>1,400</td>
<td>1,920</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>76.00</td>
<td>77.00</td>
<td>68.00</td>
<td>76.00</td>
<td>58.00</td>
<td>53.00</td>
<td>57.00</td>
<td>60.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,700</td>
<td>1,560</td>
<td>3,600</td>
<td>2,850</td>
<td>1,280</td>
<td>4,000</td>
<td>1,200</td>
<td>1,560</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Price</td>
<td>71.00</td>
<td>74.01</td>
<td>63.00</td>
<td>70.00</td>
<td>55.00</td>
<td>50.00</td>
<td>55.71</td>
<td>57.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supply</td>
<td>1,400</td>
<td>1,200</td>
<td>2,800</td>
<td>2,250</td>
<td>1,040</td>
<td>3,000</td>
<td>1,000</td>
<td>1,320</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>67.00</td>
<td>60.00</td>
<td>66.00</td>
<td>53.24</td>
<td>48.78</td>
<td>55.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,200</td>
<td></td>
<td>2,600</td>
<td>1,650</td>
<td>800</td>
<td>2,500</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Price</td>
<td>64.72</td>
<td>57.32</td>
<td>63.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supply</td>
<td>1,000</td>
<td></td>
<td>2,000</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excess supply

Security clears
Why open (vs. sealed-bid)?

- Information revealed during auction reduces winner’s curse
 - Strong common-value element means flatter supply curve with better information
 - Bidders respond by bidding more aggressively
- Bidders can condition their bids for one security on bidding that develops on other securities
 - Can better manage liquidity needs and portfolio risk
 - By contrast, bidders cannot do this in simultaneous sealed-bid auctions
- Transparency is paramount
Why uniform price (vs. pay-as-bid)?

- General assessment is that uniform price performs at least as well as pay-as-bid for financial instruments
 - That was the Treasury’s assessment, in changing the format of T-bill auctions
- Bidders hate pay-as-bid auctions, as they look foolish (or unemployed) after selling at unnecessarily low prices
 - Creates an extra reason for bidders to try to collude
- Uniform-price is ordinarily used in dynamic auctions
Why simultaneous?

- Different securities’ values are determined, in part, by the same factors (e.g. systemic risk). Hence, the bidding on one security is useful information for other securities.
- Bidders can condition their bids for one security on the bidding for other securities.
- Bidders can manage liquidity needs and portfolio risk.
- Generates better pricing information than sequential auctions.
 - Makes maximum information available to bidders.
 - Avoids pricing anomalies such as the “afternoon effect”.
Participation

• All holders of security can offer to sell
 - Small holders through proxy bid

• Can include buyers other than Treasury
 - Demand bids submitted in advance of auction
Part II: Pooled auction for other securities

• Securities with holdings too concentrated for separate auctions are pooled together
• Bidding occurs on discount or premium to reference prices for each security (price = % of reference price)
 ▪ Reference prices estimated by regressing the results of CUSIP-by-CUSIP auctions on all available characteristics
• A single descending clock (same discount or premium applicable to all securities in auction)
• Clearing occurs when cost of purchasing securities bid in auction equals the allocated budget
• Otherwise, same as CUSIP-by-CUSIP auction
Example with 2 pools of 4 securities each

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference price</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$120</td>
<td>90.35</td>
<td>84.25</td>
<td>81.78</td>
<td>89.11</td>
<td>$80</td>
<td>78.02</td>
<td>54.77</td>
<td>68.24</td>
<td>72.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>110%</td>
<td>99.39</td>
<td>92.68</td>
<td>89.96</td>
<td>98.02</td>
<td>110%</td>
<td>85.82</td>
<td>60.25</td>
<td>75.06</td>
<td>79.84</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$176</td>
<td>1,703</td>
<td>2,343</td>
<td>1,978</td>
<td>1,433</td>
<td>$117</td>
<td>1,231</td>
<td>2,741</td>
<td>1,482</td>
<td>1,076</td>
</tr>
<tr>
<td>2</td>
<td>$155</td>
<td>107%</td>
<td>96.67</td>
<td>90.15</td>
<td>87.50</td>
<td>95.35</td>
<td>106%</td>
<td>82.70</td>
<td>58.06</td>
<td>72.33</td>
<td>76.93</td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>$107</td>
<td>1,647</td>
<td>2,145</td>
<td>1,837</td>
<td>1,133</td>
<td>$98</td>
<td>1,189</td>
<td>2,572</td>
<td>1,407</td>
<td>1,004</td>
</tr>
<tr>
<td>3</td>
<td>$146</td>
<td>104%</td>
<td>93.96</td>
<td>87.62</td>
<td>85.05</td>
<td>92.67</td>
<td>102%</td>
<td>79.58</td>
<td>55.87</td>
<td>69.60</td>
<td>74.03</td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>$98</td>
<td>1,603</td>
<td>2,121</td>
<td>1,801</td>
<td>1,023</td>
<td>$98</td>
<td>1,100</td>
<td>2,422</td>
<td>1,367</td>
<td>989</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$146</td>
<td>1,603</td>
<td>2,121</td>
<td>1,801</td>
<td>1,023</td>
<td>$98</td>
<td>1,100</td>
<td>2,422</td>
<td>1,367</td>
<td>989</td>
</tr>
<tr>
<td>4</td>
<td>$136</td>
<td>102%</td>
<td>92.16</td>
<td>85.94</td>
<td>83.42</td>
<td>90.89</td>
<td>100%</td>
<td>78.02</td>
<td>54.77</td>
<td>68.24</td>
<td>72.58</td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>$94</td>
<td>1,521</td>
<td>1,945</td>
<td>1,777</td>
<td>984</td>
<td>$94</td>
<td>1,069</td>
<td>2,401</td>
<td>1,340</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$137</td>
<td>1,521</td>
<td>1,945</td>
<td>1,777</td>
<td>984</td>
<td>$94</td>
<td>1,069</td>
<td>2,401</td>
<td>1,340</td>
<td>975</td>
</tr>
<tr>
<td>5</td>
<td>$131</td>
<td>100%</td>
<td>90.35</td>
<td>84.25</td>
<td>81.78</td>
<td>89.11</td>
<td>97%</td>
<td>75.68</td>
<td>53.13</td>
<td>66.19</td>
<td>70.40</td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>$90</td>
<td>1,489</td>
<td>1,922</td>
<td>1,733</td>
<td>975</td>
<td>$90</td>
<td>1,025</td>
<td>2,366</td>
<td>1,320</td>
<td>962</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$131</td>
<td>1,489</td>
<td>1,922</td>
<td>1,733</td>
<td>975</td>
<td>$90</td>
<td>1,025</td>
<td>2,366</td>
<td>1,320</td>
<td>962</td>
</tr>
<tr>
<td>6</td>
<td>$120</td>
<td>98.20%</td>
<td>88.72</td>
<td>82.73</td>
<td>80.31</td>
<td>87.51</td>
<td>94%</td>
<td>73.34</td>
<td>51.48</td>
<td>64.15</td>
<td>68.23</td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>$84</td>
<td>1,475</td>
<td>1,744</td>
<td>1,521</td>
<td>945</td>
<td>$84</td>
<td>995</td>
<td>2,311</td>
<td>1,256</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>Spend</td>
<td>$120</td>
<td>1,475</td>
<td>1,744</td>
<td>1,521</td>
<td>945</td>
<td>$84</td>
<td>995</td>
<td>2,311</td>
<td>1,256</td>
<td>940</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>93.68%</td>
<td>73.09</td>
<td>51.31</td>
<td>63.93</td>
<td>67.99</td>
<td>$80</td>
<td>955</td>
<td>2,256</td>
<td>1,145</td>
<td>901</td>
</tr>
</tbody>
</table>
Advantages of pooled auction as part II

• Pooled auction takes full advantage of information revealed in separate auctions
 ▪ Improves accuracy of references prices
 ▪ Reference prices determined from transparent market process
• With more accurate reference prices:
 ▪ Taxpayer gets a better deal
 ▪ Liquidity goes to those in greatest need
• Provides time for reference price model and data to be developed while single-security auctions are being held
Potential enhancements to pooled auction

- Sellers could be required to bundle securities in fixed proportions before learning the reference prices.
- Cumulative purchases of each security could be capped at a fixed percentage of face value (e.g., 50%).
- Ex-post performance measures:
 - Contract could require seller to repay the difference if Treasury takes a loss on securities.
 - Backed by stock warrants or senior debt instruments.
- Self-selecting tariff: Sellers could be offered choice, e.g., of selling half of a security at 40 cents on dollar or all of a security at 30 cents on dollar.
Feasibility

- Over last ten years, there is extensive experience with auctions of this form
 - Electricity contracts
 - Gas contracts
 - Telecom spectrum
 - Emission allowances
- Can be implemented in short time-frame
- Many examples of success
Conclusion

• A well-designed auction process can:
 ▪ Provide quick and effective means to purchase securities and increase liquidity
 ▪ Get best prices for taxpayers
 ▪ Use transparent rules with minimal scope for discretion and favoritism
Appendix:
Examples of Similar Auctions
Electricity Auctions

- EDF generation capacity auctions
 - Virtual power plants — 6 GW of French electricity
 - 29 quarterly auctions (Sept 2001 – present) totaling over €9 billion
- Electrabel VPP capacity auctions
 - Virtual power plants — 1.2 GW of Belgian electricity
 - 7 quarterly auctions (Dec 2003 – May 2005)
- Endesa-Iberdrola VPP auctions
 - For the two dominant Spanish electricity companies
 - 5 quarterly auctions and 1 biannual auction (June 2007 – present)
- ISO-New England Forward Capacity Auction
 - Very large auction: $1.75 billion in value annually; more than 100 bidders
 - Procurement of generating capacity in six-state New England region
 - First auction was in February 2008; under contract for four years
Gas Auctions

- German gas release program (E.ON Ruhrgas)
 - Series of six annual auctions (2003 – 2008)
- Gaz de France gas release program
 - Single auction (Oct 2004)
- Total gas release program
 - Single auction (Oct 2004)
- Gaz de France gas storage auction
 - Single auction (Feb 2006)
- Hungary gas release program (E.ON Ruhrgas)
 - Series of five annual auctions (2006 – 2010)
- Danish Oil and Natural Gas gas release program
 - Series of six annual auctions (2006 – 2011)
Other Auctions

- Internet Corporation for Assignment of Names and Numbers (ICANN)
 - Single letter second level domains, global top level domains (2008)
- Federal Aviation Administration airport slot auction
 - Demonstration auction for industry (2005)
- Trinidad and Tobago spectrum auction
 - Clock followed by combinatorial auction (2005)
- UK emissions trading scheme auction
 - World’s first auction for greenhouse gas emission reductions (2002)
- Spectrum Exchange auction for clearing spectrum
 - Prototype auction for US spectrum (2000)
EDF Generation Capacity Auctions
Typical EDF VPP Auction

- **Number of products**
 - Two to four groups (baseload, peakload, etc.)
 - 20 products (various durations and start-dates)

- **Number of bidders**
 - 40 bidders
 - 15 to 20 winners

- **Duration**
 - Eight to ten rounds (one day)

- €300 million in value transacted in a typical quarterly auction
German Gas Release Programme Auctions (E.ON Ruhrgas)
E.ON Ruhrgas Auction

- Single product
- Number of bidders
 - 30 to 40 bidders
 - 7 winners
- Duration
 - Seven rounds (one day)
- Reserve price (binding in early years)
- In excess of €500 million in value transacted in a single annual auction
Typical Auction Related Activities

• Information Release: Documentation, Web-site, Conference etc.
• Product design
• Auction methodology
• Definition of detailed Auction Rules
• Auction software specification, development and testing
• Bidder qualification
• Bidder training: user guide and practice run
• Establishment of auction ‘war room’
• Operation of auction
• Post-auction reports on success of auction and possible improvements for future auctions
Further Information on Similar Auctions

- Power Auctions LLC: http://www.powerauction.com
- Market Design Inc: http://www.marketdesign.com
- ISO-NE FCM Auction: http://www.iso-ne.com
- Spanish VPP Auction: http://www.subasta-epe.com